
Fuzz testing of web applications
Rune Hammersland and Einar Snekkenes

Faculty of Computer Science and Media Technology
Gjøvik University College, Norway

email: firstname.lastnamehig.no

Abstract—The handling of input in web applications has many
times proven to be a hard task, and have time and time again
lead to weaknesses in the applications. In particular, due to the
dynamics of a web application, the generation of test data for
each new version of the application must be cheap and simple.
Furthermore, it is infeasible to carry out an exhaustive test of
possible inputs to the application. Thus, a certain subspace of
all possible tests must be selected. Leaving test data selection to
the programmers may be unwise, as programmers may only test
the input they know they can expect. In this paper, we describe
a method and tool for (semi) automatic generation of pseudo
random test data (fuzzing). Our test method and toolkit have
been applied to several popular open source products, and our
study shows that from the perspective of the human tester, our
approach to testing is quick, easy and effective. Using our method
and tool we have discovered problems and bugs with several of
the applications tested.

I. INTRODUCTION

Fuzzing is a technique developed by Barton P. Miller at
the University of Wisconsin in USA. He and his colleagues
have successfully used fuzzing to discover flaws in command
line tools for UNIX-like systems [1], command line tools and
GUI programs running under the X11 Window System [2],
as well as command line tools and GUI programs running on
Microsoft Windows [3] and Apple Mac OS X [4]. Using this
technique, they discovered that several programs didn’t handle
random key presses too well, many of them crashing. Many
of the problems were due to simple mistakes as neglecting
to check the return value of functions before using the result.
For a short introduction to fuzzing, you could read Sprundel’s
article from the 22nd Chaos Communication Congress [5].

While many papers have been written on fuzzing, they have
mainly focused on client software on the computer, and in
some cases, like Xiao et al. [6], on network protocols. What
seems to be missing is research on how web applications
can be tested randomly using fuzzing, and which flaws might
appear. Several papers, like [7], have suggested that user input
is a huge problem for web based applications, and especially
with regard to command injection attacks.

With the ubiquitous blogs and user contributed websites that
exists in this Web 2.0 world, it would be interesting to find
out how robust the most used applications are. When handling
large amounts of user input, it is important that user input can’t
put the web application in an undefined state, in other words:
crashing it.

While some might argue that input handling and correct
use of an API should be a non-issue, and a case for “secure
coding practices,” we’ll argue that bad coders are a fact of

life, and it is human to err. In an imperfect world, simple and
cheap tools can aid the programmer during the implementation
phase, in the hope of catching errors early. We believe this can
especially benefit the fast paced web developer.

A. Contributions

We have looked at several high profile web applications
available for installation (we have not looked at hosted solu-
tions, such as YouTube, as testing other people’s production
systems would be unethical), and how they handle fuzz data
as input. We present a listing of flaws found in the web
applications tested in Section VI, and where possible we
include information on why the application failed, and how
to fix the mistake, similarly as what Miller et al. did in [4].

II. RELATED WORK

As Miller et al. [1], [2], [4] and Forrester and Miller [3]
already have stated, many applications are vulnerable to buffer
overflows and similar attacks. Many of these flaws are hard
for the programmer to spot, as they make the assumption
that a function cannot fail and hence they do not check the
returned value. Fuzzers can assist in these cases, as backed up
by Oehlert [8], who found several flaws in Microsoft’s Hy-
perTerm by using semi-valid input obtained through a fuzzer.
Microsoft’s “Trustworthy Computing Security Development
Lifecycle” [9] even states that “heavy emphasis on fuzz testing
is a relatively recent addition to the SDL, but results to date
are very encouraging.”

In their book about fuzzers [10], Stuttard and Pinto seems
to expand the term, by including other attack methods like
enumeration attacks. A true fuzzer should try strictly random
input, or a combination of valid and random input. Enu-
meration attacks might be a better approach for discovering
vulnerabilities in web applications, but should not be confused
with fuzzing. Stuttard and Pinto also states that analyzing
results from web application vulnerability discovery is hard,
and manual work is often required.

A. Client Applications

Miller et al. tested command line programs on seven dif-
ferent versions of UNIX [1] in 1990, and managed to make
up to a third of the programs hang or crash. When they redid
the study in 1995 [2], only 9% of the programs crashed or
hung on a GNU/Linux machine, while 43% of the programs
had problems on a NeXT machine. Results on fuzz testing
X applications (38 applications) were published in the same

study, showing that 26% of the X applications crashed when
tested with random legal input, and 58% crashed when given
totally random input.

In 2001, Bowers, Lie and Smethells [11] redid the 1990
study of Miller et al. To accomodate for the fact that some of
the programs originally tested had since become abandoned,
they changed some of the programs for newer alternatives, e.g.
replacing vim for vi. Their study shows that the open source
community had noticed Miller’s study, and used it to improve
the stability of many of the affected programs.

In Forrester and Miller’s study on Windows [3], 33 GUI
programs were tested on Windows NT 4.0, and 14 GUI
programs were tested on Windows 2000. In this study they
used the API to send random messages and “random valid
events”. Sending random messages to the running programs
caused more errors than sending valid random events. Ghosh
et al. also looked at the robustness of Windows NT software
using fuzzing [12]. They only tested 8 different programs,
but had a lot of different test cases where they found that
23.51% of the tests resulted in a program exiting abnormally
and 1.55% of the tests resulted in a program hanging.

The last study from Miller et al., conducted on Mac OS
[4], shows similar results to the best results from [2] when it
comes to command line programs. This comes as no surprise,
as many of the command line programs in Mac OS X are GNU
programs. The GUI applications on Mac OS had a worse fate.
Of 30 tested programs, 22 crashed or hung, yielding a 73%
failure rate.

B. Network Protocols and the Web

Banks et al. [13] points out that while many fuzzers exists
for fuzzing network traffic, like SPIKE [14] and PROTOS [15],
they don’t handle stateful protocols very well, and making
them do so might require more work than writing a new
framework altogether. Their creation — SNOOZE — lets the
user specify states and transitions for a protocol with default
values for the transitions. Using this information they can write
a script that creates fuzz values for some of the messages, and
thus they can control which point in the protocol state machine
they wish to attack, allowing them to discover bugs “hidden
deep in the implementation of [the] stateful protocol.”

Fuzzing has also proven effective in discovering vulnerabil-
ities in web browsers, and through this a means of exploiting
the Apple iPhone [16]. The infamous “Month of browser bugs”
article series also utilized fuzz testing in order to discover
vulnerabilities in the most commonly used web browsers [17].
There are some tools available for fuzzing web applications:
Paros1, SPIKE and RFuzz2 to mention some. The first two
work by acting as an HTTP proxy which allows you to modify
POST or GET values passed to a web site. The last one is more
like a framework for fuzzing which enables a programmer to
programatically fuzz web sites.

1http://www.parosproxy.org/
2http://rfuzz.rubyforge.org/

Attack script:
setup("Appname") do
 @host = "localhost"
 @port = 80

...
end

Fuzz program HTTP
Client

Request

Response

Logs

Output

Input

Figure 1. An overview of the main components in the fuzzer and how they
interact. An attack script semi-generated by a crawler is fed to the fuzzer
which in turn translates the attacks to HTTP requests which is sent to the
target of the attack. The requests and their responses are then logged for
manual inspection.

C. Wireless Drivers

Testing of wireless drivers are very interesting in these days,
as wireless connectivity is becoming the standard for many
people. It is made even more important by the fact that wireless
drivers usually runs in kernel mode, and thus an exploit can get
full access to the computer, with the attacker only in proximity
of the victim. Butti and Tinnès stresses this fact in their paper
on discovering and exploiting wireless drivers [18], as well as
how wireless networks are weakening the security perimeter.

Mendonça and Neves has done some preliminary testing
of the wireless drivers in an HP iPAQ running the Windows
Mobile operating system [19]. Without having the source
code available, they wrote a fuzzing framework targeting the
wireless drivers on the device. By monitoring the device they
have been able to find some weaknesses by fuzz testing the
driver. Butti and Tinnès were successful in exploiting the
madwifi driver running in the Linux kernel, as well as finding
several denial of service vulnerabilities in different wireless
access points. Some of the findings were included in the
Month of Kernel Bugs3 project and included as modules in
the Metasploit project4.

III. BUILDING THE FUZZER

In this section we propose a method to build a fuzzer
suitable for fuzzing web applications. Our implementation
is based on the RFuzz library for the Ruby programming
language5, but could just as well have been based on Peach
or Sulley. An overview of how the parts are interconnected is
presented in Figure 1.

In order to specify how the applications should be attacked,
we have created a way of writing attack scripts for fuzzing
web applications. We specify global variables for the target,
like hostname and port, headers and cookies, and then we
specify “attack points” for the target. The attack points in a
web application are mainly web pages containing form(s) for
user input.

Utilizing a random number generator, we provide conve-
nience objects for usage in the attack scripts in the form of a

3http://projects.info-pull.com/mokb/
4http://metasploit.com/
5http://ruby-lang.org

setup "Webapp" do
@host = "10.0.0.2"
@port = 3000
@headers = "HTTP_ACCEPT_CHARSET" => "utf-8,*"

attack "search-box" do
many :get, "/search.php",

:query => {:q => str(50)}
many :get, "/search.php",

:query => {:q => fix}
end

attack "post-page" do
once :get, "/login.php", :query =>

{:user => :admin, :pass => :admin}
many :post, "/post.php", :query =>

{:title => word, :body => byte(50)}
end

end

Figure 2. Example of an attack script

“fuzz token”. Each FuzzToken subclass implements a method
called fuzz. In this method it uses the random number
generator to generate random entities. The superclass also uses
the fuzz method to get a string representation of the fuzz
data. Hence, the tokens are evaluated every time the HTTP
client creates a request (as the request path and parameters
ultimately needs to be in string format).

In the attack points we specify which path should be
attacked, which HTTP method should be used (mainly GET
and POST) and which query options should be sent. The
fuzz tokens provided can be inserted as values for e.g. query
options. Figure III gives an example of an attack script. The
variables word and fix are fuzz tokens, and will yield a
different value each time a request is made. The word token
will give different words, the fix token will give different
“Fixnum”s (a 30-bit signed integer), and str(50) gives
different strings with a length of 50 characters.

When the fuzzer is fed an attack script, it creates a Target
object based on the contents. When the attack script sets
a value for @host, it overrides the default value used by
the Target object. The attack method is defined to take a
name and a block of code as a parameter. The code block is
evaluated, and calls to once results in the following request
getting queued once in the request queue. Calls to many
results in the following request getting queued a predefined
(and configurable) amount of times.

Creating these attack scripts by hand is easy, but tedious
work. We created a crawler based on Hawler6 which traverses
the application breadth-first from the starting URI it is given.
Every page is passed through a function that identifies forms,
and outputs parts of the attack script. By storing the output
from the crawler, we get a good starting point for writing an
attack script.

We did have some problems with the crawler. While you
can pass headers which it uses in each request, it is not straight
forward to define pages it should abandon. This results in a

6http://spoofed.org/files/hawler/

problem when you add a cookie to the headers in order to
“log in” to the admin panel and scrape these pages. The first
couple of pages are usually parsed OK, but when it reaches
the link that logs out of the admin panel, the rest of the URIs
pointing within that password protected space will no longer
be available.

In order to supply fuzz data as input to an application, we
need to include a simple HTTP client. This client will be
used to send input to the application, and return the resultant
response to our fuzz program. The functionality we need from
an HTTP client is the following:

1) Easy interface for creating GET and POST requests.
2) Possibility to read headers in the response.
3) Possibility to add or modify headers in the request.
4) Handling of cookies. This isn’t strictly necessary, as it

could be implemented through access to headers.
Lastly we have a class called Fuzzer, which is responsible

for tying the components together in order to mount the attack.
The Fuzzer is initialized with a Target, and creates a directory
for logfiles along with a logger for the current session. Before
starting the attack, the fuzz tokens found in the request queue
of the target are evaluated.

After evaluating the tokens, the fuzzer starts firing requests
based on the information in the request queue. Using the
logger, it logs requests about to be made, and the responses
when they arrive. If the method used for the current request
is POST, it adds the correct content type header, and puts an
urlencoded version of the query in the request body, as per
Section 17.13.4.1 of the HTML 4.01 specification [20]. If the
method is GET, the query is passed as a part of the URI. For
more on urlencoding, please refer to RFC 1738 [21], and the
newer RFC 3986 [22].

Having prepared the request, it uses the HTTP client to send
it to the host. When the response is received, it records the
status code and request timings, and logs a serialized version of
the request and response. When all requests have been made,
it creates one CSV file containing the recorded number of
different status codes, and one CSV file containing statistics
on the request timings.

IV. USING THE FUZZER

This section describes how to use the fuzzer by setting up an
attack script (Section IV-A), running the fuzzer (Section IV-B)
and gives hints on analyzing the results (Section IV-C).

A. Creating the Attack Script

After setting up the target application, you need to tell the
fuzzer where it can send it’s requests, and which parameters
it can send. This can be done in many ways, but here we will
describe the actions taken in this study. We did this in two
steps.

First we used our crawler to crawl the web pages of
the target application. The details of this has already been
explained in Section III. Having crawled the site, the attack
script had to be manually adjusted. The arguments to the
request had to be filled in properly, as the crawler only passed

the values which were suggested on the web page. As an
example, consider the following: the crawler encounters a web
page with a search box containing the default value “Search
...”. The output would then look something like this:

attack("/Welcome_to_Junebug") do
many :post, "/search", {"q" => "Search ..."}

end

From the output we can see that on the page with URI
/Welcome_to_Junebug, the crawler found a form that
submits to the URI /search and which has a single input
field with the name of q and a default value of “Search ...”.
Going through the output of the crawler, we might change it
to something looking like this:

attack("Search box") do
many :post, "/search", {:q => str(100)}
many :post, "/search", {:q => byte(100)}
many :post, "/search", {:q => big}

end

When we now choose to run the fuzzer, it will attack the
search box in the following way:

1) Send “many” HTTP POST requests to /search, with
the parameter q set to a random string of length 100.

2) Send “many” HTTP POST requests to /search, with
the parameter q set to a random byte sequence of length
100.

3) Send “many” HTTP POST requests to /search, with
the parameter q set to a random big number.

While the manual labour might sound tedious and boring
(and it is), we didn’t see the need to further automate it for our
initial testing. We have proposed ways to improve this part in
Section VII.

B. Running the Fuzzer

Having created and tweaked the attack script, running the
fuzzer is as easy as starting the application with the script
as the argument: ruby fuzz.rb attack_script.rb.
While the fuzzer runs it will only output some information
on the progress to the screen. However if you monitor a log
file it creates, you can see a more verbose transcript of what’s
happening. The log file is created in a directory based on the
name specified in the attack script, and the filename is based
on the time the fuzzer was invoked.

When the fuzzer is done, the log directory will contain the
following files: A comma separated file containing the counts
of various HTTP status codes (and exceptions thrown); A
comma separated file containing statistics about the timings.
Average, max, min times of the requests etc.; A file contain-
ing the event log; A serialized version of the requests and
responses.

C. Analyzing the Results

Analyzing the results is hard to automate, since there are
various ways to look at the data to determine what can be
considered an erroneous response. However, we recommend
starting by looking at the responses where the status code is in

Table I
THE COMPUTERS

Web server Attack Machine
Brand Cinet Smartstation 200 Apple iBook G4
CPU Pentium III, 870 MHz PPC G4, 1.33 GHz
RAM 377 MB 1.5 GB
Operating System Debian GNU/Linux 4.0 Mac OS X 10.5

the 500 range. By looking at Section 10.4 of RFC 2616 [23],
we see that the status codes in the 400 range are reserved for
client errors which indicate that the fault is that of the client
(usually the user or browser). Its Section 10.5 tells us that
status codes in the 500 range are reserved for server errors, and
“indicate cases in which the server is aware that it has erred
or is incapable of performing the request.” This is also one
of the methods Stuttard and Pinto suggests using [10]. In an
ideal world, we should thus be certain that if a fuzzed request
resulted in a status code in the 500 range, we discovered a flaw
in the application or web server. Looking at other sections we
can also see that a status code 200 means success and that
status codes in the 300 range are used for redirection.

While looking at the logged responses with a status code of
500, some of them might contain a stack trace indicating where
the application erred. In some cases, correlating the timestamp
of the response with the server logs might give you the same.
Combining the stack trace with the source code will often
provide what you need to find out where the developer might
have made an erroneous assupmtion.

By looking at the CSV file containing counts of status
codes, you should also be able to see if exceptions are raised.
As an example, seeing ErrnoECONNREFUSED means that a
connection to the web server could not be made. If this occurs
after a seemingly OK request, it might mean that one of the
previous requests managed to halt the web server.

V. EXPERIMENT

This section explains how we conducted our experiment.
Section V-A describes the environment in which the project
took place, and gives a list of computers and software used,
Section V-B gives a brief overview of the applications we
tested and Section V-C briefly states how we ran the experi-
ment with regards to the previous section.

A. Environment

The tests have been conducted on two machines, one web
server and one attack machine (see Table I). The following
software has been used on the server (the version numbers
match the ones in Debian 4.0 at the time of writing): Apache
2.2.3, PHP 5.2.0-8+etch10, MySQL 5.0.32, Ruby 1.8.5 and
Perl 5.8.8. On the attack machine the following software has
been used: Ruby 1.8.6, RFuzz 0.9, Hawler 0.1 and Hpricot
0.6.

While testing, the machines were connected through a
network cable, using an ad-hoc network with only the attacker
and the server present. This way we remove the possibility of
other computers interfering with our test environment, without

having to set up a dedicated test lab. The server had a monitor
and keyboard connected, so by monitoring the log files, we
could see what was going on on the server while running the
attack script on the attack machine.

B. Applications tested

The following is a list of the applications we have tested
(targets) in this study. Descriptions are taken from the project
pages of the respective application.

• Chyrp 1.0.3 – “a [lightweight] blogging engine, [. . .]
driven by PHP and MySQL.”

• eZ Publish 4.0.0-gpl “an Enterprise Content Management
platform” using PHP and MySQL.

• Junebug 0.0.37 – “a minimalist wiki, running on Camp-
ing.”

• Mephisto 0.7.3 – “a [. . .] web publishing system [using
Ruby on Rails].”

• ozimodo 1.2.1 – “a Ruby on Rails powered tumblelog.”
• Request Tracker 3.6 – “an enterprise-grade ticketing

system” written in Perl.
• Sciret 1.2.0-SVN-554 – “an advanced knowledge based

system” using PHP and MySQL.
• Wordpress 2.3.2 – “a state-of-the-art semantic personal

publishing platform” using PHP and MySQL.

C. Running the Experiment

After choosing targets and installing them on the web server,
we generated preliminary attack scripts using the crawler, and
manually tweaked them (see Section IV-A). The number of
forms attacked per application, the total number of inputs (text
fields, dropdown boxes, etc.) fuzzed and the time taken to
manually tweak the scripts can be seen in Table II.

The time taken to tweak the scripts mainly depend on two
things: how many and complex the forms are, and how much
control you want over which tokens are used. eZ, Mephisto
and RT all have complex forms (with many different inputs),
but in the case of RT, we chose to let the fuzzer pick a random
token for each input.

For Chyrp, Junebug, Mephisto and ozimodo we created
one attack script for the user interface, and one for the
administrative interface. For eZ, Sciret and Wordpress, we only
targeted the user interface, and Request Tracker (RT) doesn’t
have a user interface, so there we targeted the administrative
interface. For RT, we faced a problem mentioned in Section III:
the crawler logged out after harvesting a few pages. We found
out about this late in the process, but managed to get some
results anyway.

We used the methods mentioned in Section IV-C to analyze
the log files, as well as creating a chart of status codes returned,
in order to get an overview of where to start looking.

VI. FINDINGS

This section contains an overview of the discoveries we
made during validation of our fuzzing tool. A list of which
bugs were found in which applications is given in Table II.
The issues, E1–E4, refers to the sections below.

Table II
INPUT COMPLEXITY AND BUG DISCOVERY

Complexity Issues
Application #forms #inputs time E1 E2 E3 E4
Chyrp 4 11 ≈15m – – – –
eZ 6 20 ≈60m – – – –
Junebug 5 8 ≈15m – – 3 –
Mephisto 10 49 ≈60m – 2 1 –
ozimodo 5 26 ≈30m – 2 – –
RT 4 64 ≈20m 1 – – –
Sciret 6 24 ≈20m – – – –
Wordpress 4 10 ≈20m – – – 2
Sum 44 212 ≈240m 1 4 4 2

E1 Resource exhaustion: This type of bug usually manifests
itself by causing increased response times and possibly no
response at all. This can be caused e.g. by non-terminating
recursion and infinite loops. In RT, we discovered a non-
terminating recursion, resulting in high cpu consumption and
a memory leak, followed by a forced process termination. This
was caused by a subroutine trying to validate our input, and
after mail exchange with the developers it seems the problem
revolves around bad handling of invalid UTF-8 byte sequences.

E2 Failure to check return values: We saw that Mephisto
failed to handle an exception that was raised in a third part
library used for formatting the user input, which in the earlier
days of web browsers could mean that all text the user typed in
was lost. A simple formatting error should be caught by the
application and not result in showing the user a stack trace
they usually don’t understand. The programming language
used, Ruby, is a dynamic language, and doesn’t enforce the
programmer to catch an exception or explicitly state that the
exception could be thrown as in, say, Java. This might be
the reason why these mistakes are easier to make in dynamic
languages that enables rapid prototyping.

E3 No server side validation of input: It is our belief
that user data should be sanitized before being allowed to
propagate through the code. You can never trust a user to enter
legitimate values, even if the possible values are “limited” by
a dropdown box. As we have seen it is easy to bypass these
restrictions. Similarly, using JavaScript to validate user input
should only be considered a convenience for the user — not a
security measure. Knowing how easy it is to disable JavaScript
support in a web browser, we should always enforce the same
checks server side as we hope to achieve at the client side.

We found an example where Mephisto assumed that the
user would not enter other values than the ones provided by a
dropdown box. Failure to do so would result in an uncaught
exception. While this is a bad example, it still shows that
assumptions not always are correct. Also: a problem with
passing user input more or less unchecked to a filter (as was
done in the example mentioned earlier), is that an attacker can
target a vulnerability in the third party filter in stead of the
webapp itself, leading to an extended attack surface.

E4 Incorrect use of HTTP status codes: While this is not
really a security related bug, it is a violation of the semantics
described in the HTTP protocol (RFC 2616 [23]). The biggest

problem for us is that it makes automating the analysis harder,
as we cannot rely on HTTP status codes to tell us how the
web server and/or application perceives the error. As we stated
in Section IV-C, we should, by the semantics of HTTP 1.1,
be able to assert that a status code in the 500 range indicates
problems on the server. Not, as was the case with Wordpress,
that the application has correctly identified that the problem
originates from the user.

VII. CONCLUSION AND FUTURE WORK

The tests we have been running are not comprehensive
enough to give us a basis for making bold statements about
the quality of the applications we have tested. However, we
believe the results we found is a good indication that fuzz
testing indeed can be effective as part of a test procedure for
web applications. By running relatively few tests we managed
to discover several bugs, and some potential bugs which were
not investigated fully.

The biggest hurdle with fuzzing web applications is to find a
good way of analyzing the results. For our purposes, checking
the responses with status 500 was good enough, but for bigger
result sets, other techniques might be more appropriate, like
checking for certain strings in the response body (as i.e.
Stuttard and Pinto does [10]).

Our work shows that some web applications indeed are
vulnerable to fuzzing. Not only new and fragile applications,
but also “tested and true” applications, as well as applications
which has been developed with a focus on unit testing.

Proposals for future work includes:
• Using a similar approach for fuzzing web services. By

parsing a WSDL file, you could automate attack script
creation.

• Add “blacklisting” of pages to the crawler to avoid
logging out from administrative pages.

• Make the fuzzer pick a random fuzz token for all fields
with a value of “nil”, and let this be the standard value
generated by the crawler. This approach is similar to [18].

• Combine the crawler and fuzzer. This could make fuzzing
a one-pass or two-pass job: Either crawl a page and store
links, fuzz entry points on the current page, and move
on; or crawl the application, log entry points and invoke
the fuzzer when done crawling.

• Fuzzing file uploads might be an area worth looking into.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for many
useful comments.

REFERENCES

[1] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Communications of the ACM, vol. 33, no. 12,
p. 22, Dec. 1990.

[2] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natarjan,
and J. Steidl, “Fuzz revisited: A re-examination of the reliability of unix
utilities and services,” Computer Sciences Technical Report, vol. 1268,
p. 23, Apr. 1995.

[3] J. E. Forrester and B. P. Miller, “An empirical study of the robustness
of windows nt applications using random testing,” Proceedings of the
4th conference on USENIX Windows Systems Symposium - Volume 4
WSS’00, p. 10, Aug. 2000.

[4] B. P. Miller, G. Cooksey, and F. Moore, “An empirical study of the
robustness of macos applications using random testing,” Proceedings of
the 1st international workshop on Random testing RT ’06, p. 9, Jul.
2006.

[5] I. van Sprundel, “Fuzzing: Breaking software in an automated fashion,”
22nd Chaos Communication Congress (http://events.ccc.de/congress/
2005/fahrplan/attachments/582-paper fuzzing.pdf), 2005, (Visited May
2008).

[6] S. Xiao, L. Deng, S. Li, and X. Wang, “Integrated tcp/ip protocol soft-
ware testing for vulnerability detection,” Computer Networks and Mobile
Computing, 2003. ICCNMC 2003. 2003 International Conference on,
pp. 311–319, 2003.

[7] Z. Su and G. Wassermann, “The essence of command injection attacks
in web applications,” in POPL ’06: Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.
New York, NY, USA: ACM Press, 2006, pp. 372–382.

[8] P. Oehlert, “Violating assumptions with fuzzing,” Security & Privacy
Magazine, IEEE, vol. 3, no. 2, pp. 58–62, 2005.

[9] S. Lipner, “The trustworthy computing security development lifecycle,”
in ACSAC ’04: Proceedings of the 20th Annual Computer Security
Applications Conference (ACSAC’04). Washington, DC, USA: IEEE
Computer Society, 2004, pp. 2–13.

[10] D. Stuttard and M. Pinto, The Web Application Hacker’s Handbook:
Discovering and Exploiting Security Flaws. Wiley, 2007.

[11] B. L. Bowers, K. Lie, and G. J. Smethells, “An inquiry into
the stability and reliability of unix utilities,” http://pages.cs.wisc.edu/
∼blbowers/fuzz-2001.pdf, (Visited May 2008). [Online]. Available:
http://pages.cs.wisc.edu/∼blbowers/fuzz-2001.pdf

[12] A. K. Ghosh, V. Shah, and M. Schmid, “An approach for analyzing
the robustness of windows NT software,” in Proc. 21st NIST-NCSC
National Information Systems Security Conference, 1998, pp. 383–391.
[Online]. Available: citeseer.ist.psu.edu/ghosh98approach.html

[13] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and
G. Vigna, “Snooze: Toward a stateful network protocol fuzzer,” Infor-
mation Security, pp. 343–358, 2006.

[14] D. Aitel, “The advantages of block-based protocol analysis for security
testing,” Immunity Inc., Tech. Rep., 2003.

[15] R. Kaksonen, “Software security assessment through specification mu-
tations and fault injection,” Communications and Multimedia Security
Issues of the New Century, 2001.

[16] C. Miller, J. Honoroff, and J. Mason, “Security evaluation of ap-
ple’s iphone,” http://securityevaluators.com/iphone/exploitingiphone.pdf,
2007, (Visited May 2008).

[17] S. Granneman, “A month of browser bugs,” http://www.securityfocus.
com/columnists/411, jul 2006, (Visited May 2008).

[18] L. Butti and J. Tinnès, “Discovering and exploiting 802.11 wireless
driver vulnerabilities,” Journal in Computer Virology, 2007. [Online].
Available: http://dx.doi.org/10.1007/s11416-007-0065-x

[19] M. Mendonça and N. F. Neves, “Fuzzing wi-fi drivers to locate security
vulnerabilities,” High Assurance Systems Engineering Symposium, 2007.
HASE ’07. 10th IEEE, pp. 379–380, 14-16 Nov. 2007.

[20] D. Raggett, A. L. Hors, and I. Jacobs, “Html 4.01 specification,” http:
//www.w3.org/TR/REC-html40/, dec 1999, (Visited May 2008).

[21] T. Berners-Lee, L. Masinter, and M. McCahill, “Rfc 1738: Uniform
resource locators (url),” http://www.ietf.org/rfc/rfc1738.txt, dec 1994,
(Visited May 2008).

[22] T. Berners-Lee, R. Fielding, and L. Masinter, “Rfc 3986: Uniform re-
source identifier (uri): Generic syntax,” http://www.ietf.org/rfc/rfc3986.
txt, feb 2005, (Visited May 2008).

[23] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Rfc 2616: Hypertext transfer protocol – http/1.1,”
http://www.ietf.org/rfc/rfc2616.txt, jun 1999, (Visited May 2008).

http://events.ccc.de/congress/2005/fahrplan/attachments/582-paper_fuzzing.pdf
http://events.ccc.de/congress/2005/fahrplan/attachments/582-paper_fuzzing.pdf
http://pages.cs.wisc.edu/~blbowers/fuzz-2001.pdf
http://pages.cs.wisc.edu/~blbowers/fuzz-2001.pdf
http://pages.cs.wisc.edu/~blbowers/fuzz-2001.pdf
citeseer.ist.psu.edu/ghosh98approach.html
http://securityevaluators.com/iphone/exploitingiphone.pdf
http://www.securityfocus.com/columnists/411
http://www.securityfocus.com/columnists/411
http://dx.doi.org/10.1007/s11416-007-0065-x
http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/REC-html40/
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc2616.txt

	Introduction
	Contributions

	Related Work
	Client Applications
	Network Protocols and the Web
	Wireless Drivers

	Building the Fuzzer
	Using the Fuzzer
	Creating the Attack Script
	Running the Fuzzer
	Analyzing the Results

	Experiment
	Environment
	Applications tested
	Running the Experiment

	Findings
	Conclusion and Future Work
	References

