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1 Terms

For assessing the quality of IDS systems, we first need to define a couple
of terms. When an IDS is looking at the network traffic (or events on the
host for host based IDSes), it tries to decide if the traffic is is malicious or
not. When the IDS indicates an intrusion, this is called a Positive. When
the IDS indicates an intrusion and an intrusion indeed is in progress, we
have a True Positive (TP). In other words the positive assertion from the
IDS is to be trusted, as it is a correct assertion. When the IDS indicates an
intrusion even though no attack is in progress, we have a False Positive
(FP).

On the other hand, when the IDS indicates that the traffic or event is
harmless, this is called a Negative. When the IDS indicates that no intru-
sion is in progress and this is a correct assertion, we have a True Nega-
tive (TN). And the opposite: when the IDS indicates that no intrusion is
in progress, while there actually is an intrusion attempt, we have a False
Negative (FN). These terms are shown in Table 1. From here on out, we
shall assume a Network Intrusion Detection System.

The total number of intrusions during a certain amount of time is de-
fined as the number of True Positives and the number of False Negatives
(as these are actually intrusions). The total number of non-intrusions is
thus derived from the number of True Negatives and the number of False
Positives (as these actually aren’t intrusions). From these numbers we can
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Table 1: Truthtable for intrusion assertion by an IDS
Assertion by the IDS

Positive Negative

Intrusion? Yes True Positive False Negative
No False Positive True Negative

then derive the Base Rate, which is the probability of an attack on our
system. This is defined as the number of intrusions over the number of
events. See also Equation 1

BaseRate =
TP + FN

TP + FP + TN + FN
(1)

Other rates that are interesting when evaluating an IDS are True Posi-
tive Rate, False Positive Rate, True Negative Rate and False Negative Rate.
These rates corresponds to the terms already defined (the same names,
only without the word Rate). While a True Positive is an actual intrusion
correctly detected by the IDS, the True Positive Rate is the probability that
an intrusion attempt in the environment is detected by the IDS (see i.e.
[Pet06]). In other words, the number of True Positives over all intrusion
attempts in the environment:

TPR = P (A|I) =
TP

TP + FN
(2)

where A is an Alarm and I is an Intrusion. The False Positive Rate, the
probability of an alarm given no intrusion, is given by:

FPR = P (A|¬I) =
FP

FP + TN
(3)

The probability of no alarm given no intrusions, the True Negative Rate
is given by: TNR = P (¬A|¬I) = TN

FP+TN
. Lastly, the False Negative Rate,

the probability of no alarm given an actual intrusion, is given by: FNR =
P (¬A|I) = FN

TP+FN
.
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FPR - False Positive Rate (false alarm probability)

Figure 1: Example of a ROC curve. The red line represents the trade-off
between TPR and FPR. The intersection between the red and the green line
is where we find the Equal Error Rate.

2 ROC - Receiver Operating Characteristics

ROC curves are often used to identify the quality of an automated system
where some criteria can be changed in order to affect the quality of the
system. The curve is a plot between hit rates and false alarm rates in order
to show the trade-off between them. Systems for biometric authentication
for instance often use ROC curves to find the Equal Error Rate — the point
where the usability of the system is as good as the security. This point is
identified by plotting the False Match Rate (the number of impostors en-
tering as a legitimate user) against the False Non-Match Rate (the number
of legitimate users turned down by the system) as a ROC curve (indicated
by a red line in Figure 1). Using that curve, we find the Equal Error Rate
by looking at the intersection between the curve and the linear function
y = ymax − x (indicated by a green line in Figure 1).

ROC curves sees a great amount of use in digital signal processing,
medical decision making, evaluation of radiologic systems and machine
learning (see [Faw03], which also includes a discussion of misconceptions
and pitfalls regarding to the use of ROC curves). Apparently, Lippmann et
al. [LFG+00], in their extensive 1998 (and 1999) study, were the first ones
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to apply ROC curves to evaluate different kinds of IDS.
In assessing an IDS, we are usually interested in looking at how changes

in the ruleset affect the detection probability (TPR) and the probability for
a false alarm (FPR) [MHL+03]. That way we can find out how to define the
ruleset in a way that yields high detection probability, while maintaining
the false alarm probability as low as reasonably possible. A problem with
this approach, is that it doesn’t take into account that the False Negatives
usually have higher cost than False Positives [OCR06].

Gaffney and Ulvila [GU01] has proposed a method for evaluating an
IDS which is based on a combination of a ROC analysis and a cost analy-
sis. It also tries to assess the hostility of the operating environment. The
method implements this through a decision tree, and calculates expected
costs. After doing this, it tries to find an optimal operating point. As they
take into account the cost of false alarms and detection failures as well
as the probability of an attack and the ROC curve, they argue that their
approach better describes the quality of an IDS.

Axelsson [Axe00] states that in creating a ROC curve for an IDS, we will
always touch upon the points (0, 0) and (1, 1), as we can always decide that
all traffic is either malicious or benign. Further he states that if we make a
random decision about whether the traffic is malicious or not, the system
will achieve TPR and FPR somewhere on the diagonal between (0, 0). Due
to this fact we can say that any sensible IDS should perform above this
diagonal.

3 Usefullness of ROC Curves for IDS

In general it is very hard to test an IDS, because you can only simulate traf-
fic and attacks, or put the system in the production environment to test it
with real data. In the first case you can only test the system against known
attack patterns, and these are patterns you most likely have written good
rules for anyway. The only benefit you get from those tests is that you can
make sure those rules indeed are effective, and that the IDS doesn’t take
too long time to process the data (which could lead to packet drops, which
again leads to higher FNR). In the latter case you would test the system
against real data, however it is much harder to establish what traffic is re-
ally part of an attack. Mell et al. [MHL+03] points to weak signatures for
signature based IDS that i.e. triggers on all traffic to a certain port, detec-
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tion of common violations of the TCP protocol, and of course that there
is no such thing as a “standard” network. All of these things makes it
hard to test an IDS, and to verify whether you have True or False Positives
when the IDS issues an alarm, as well as the opposite aspect: identifying
the False Negative Rate.

Furthermore, McHugh in his critique [McH00] on IDS evaluations per-
formed by Lippmann et al., claims that ROC curves have “unanticipated
problems in it’s application to IDS evaluation”. He lists the following
problems: “[. . . ] problems in determining appropriate units of analysis,
bias towards possibly unrealistic detection approaches, and questionable
presentations of false alarm data.” We can imagine the temptation to tune
the rule set to better match the testing environment, which might not be
the same as the production environment.

To be able to use ROC curves to compare two or more systems, the
curves should be generated using similar, or preferrably the same test
data. McHugh points to problems that arises when systems are tested
against predefined corpora: “[the corpus requires] careful construction
and validation if their content and structure are not to bias the systems that
are developed using them for test data” (in other words: systems tuned to
perform well using the test data).

When comparing ROC curves for two Intrusion Detection Systems, Or-
fila et al. [OCR06] states that as long as the two curves intersects at some
point, we cannot claim that one system is better than the other. The rea-
son for this is that while some users will need a high detection rate (and
therefore are partial to the system which performs on the top right part
of the ROC curve) another user might need a low false alarm probability
rate (the system that performs on the bottom left part of the curve). The
needs of users can of course be placed anywhere on the top left part of the
diagonal, so it is highly subjective which system is “best”. When we have
two systems, A and B, and the following condition is met:

∀(xa, ya), (xb, yb) ∈ A, B : ya >= yb (4)

where (xa, ya) is a point on the curve of system A, xa is a point on the x-
axis (FPR) and ya a point on the y-axis (TPR), we can conclude that system
A outperforms system B, as A will be as good, or better for every test. A
user can then safely choose system A, regardless of need.

As we can see, the ROC curve only applies to how the system per-
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formed in the testing environment. In this enviromnent we test the system
for it’s detection rate for known attacks, and while this is valuable, there
is no way to test how well the system handles new attacks (unless the sys-
tem, and rule set was made before a new attack method). This method of
testing might give a bias towards signature based systems, as these gen-
erally contains signatures for all known attacks, while an anomaly based
system probably will perform better. Axelsson also points to this in his
conclusion [Axe00], stating that anomaly based systems often will yield
higher false alarm rates, while the cost of a false alarm usually is lower
than the cost of false negatives.
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