
Sandboxing of Dynamic Code

Rune Hammersland

Student at NISlab

Sandboxing of code is convenient in a lot of situations, not only for evaluating code without

the risk of contaminating the surrounding code. This document tries to get an overview of how
this can be achieved in the dynamic languages Ruby, Perl and Python. It also contains a brief

section on how some operating systems makes it easier running untrusted code using separation

techniques resembling virtual machines.

Categories and Subject Descriptors: D.1.m [Programming Techniques]: Miscellaneous; D.2.5

[Software Engineering]: Testing and Debugging; D.2.6 [Software Engineering]: Program-

ming Environment; D.3.3 [Programming Languages]: Language Constructs and Features

General Terms: Languages, Security

Additional Key Words and Phrases: Dynamic languages, Ruby, Perl, Python, Sandboxing, Secu-

rity

This document will discuss Sandboxing of code, and focus on the possibilities
in the dynamic languages Ruby, Python and Perl. The reasons for the choice of
languages are as follows:

(1) I am currently using Ruby as my primary programming language, and have
been following discussion on the Sandbox module being developed by “why the
lucky stiff” and “MenTaLguY”1 (along with others).

(2) Dynamic languages are a big target for sandboxing as evaluating foreign code
in these languages are both easy and dangerous.

(3) All these languages includes mechanisms to deal with running untrusted code.
They are also very similar, as the creators of both Ruby and Python have
looked to Perl for inspiration. Even though my knowledge of the others are
restricted, it won’t be too hard to read up on it.

(4) The languages are accessible for many people. All three are for instance in-
cluded in a basic install of Mac OS X (and Perl and Python are available on
most standard Linux installs). In addition all are available as free software
[Free Software Foundation 2006], and their licenses are compatible with the
GNU GPL [Free Software Foundation 1991].

1. WHAT IS SANDBOXING?

In this document Sandboxing will refer to a technique which allows you to execute
untrusted code in your environment, without letting the untrusted code tamper with
your surrounding code. We want to make sure the untrusted code cannot alter the
way the surrounding program behaves. Ruby for instance has the principle of Open
Classes, which means that it is possible to redefine all classes and their methods
after they have been defined. Of course tampering with the data structure of the

1It is nearly impossible to find their real names, and god knows I’ve tried ...

Sandboxing of Dynamic Code by Rune Hammersland, NISlab, Fall 2006



2 · Rune Hammersland

surrounding code is also possible through the object’s getters and setters. By using
the sandbox we can separate trusted and untrusted code in such a way that the
trusted code can tamper with the untrusted code, but not the other way around.

It is also a plus if the sandbox prohibits the untrusted code from wreaking havoc
on your filesystem by i.e. restricting IO calls to a temporary filesystem, or pro-
hibiting IO calls all together. We will almost always want to restrict access to the
filesystem, as it makes it possible to tamper with important files (write something
bogus to them, change the content with your own to make more illegal code run,
or deleting it) and reading sensitive information (as the password file for instance).

A sandbox will rarely prohibit the untrusted code from creating an infinite loop
which will steal all the CPU cycles, and in effect halting the main program. In effect
working as a Denial of Service attack. Sometimes it is possible to work around this
by running the sandbox in a thread which we kill after a specified time interval.
This is not looked heavily into in this paper.

Virtual machines can also be used as sandboxes when you are running code you
don’t neccecarily trust. However, this is pretty cumbersome on today’s systems, as
it requires setting up and booting a virtual machine first. In the future this will
probably be a lot simpler, especially due to the fact that dual (and quad) processors
are becoming more and more common. These systems might for instance supply
system calls to create a VM on the fly, and destroy this after you are finished using
it.

The Java programming language uses a sandboxing approach to deal with running
of possibly unsafe applets on the host machine. Java applets are a nice way of
sharing programs over the internet, as people only need to navigate to a website
and run the program from there. If the programmer updates the program, the
users will always be running the latest version. The problem arises when you are
running applets from sources you don’t know, and hence cannot trust full access to
your computer. To solve this, the Java VM (Virtual Machine) runs the applets in
a sandbox, which prohibits them from accessing sensitive parts of the system (i.e.
they only get to write and read files from a temporary directory created for the
applet).

2. WHY WOULD YOU WANT TO SANDBOX CODE?

There can be several reasons to why you would like to sandbox a piece of code.
Often it is because the code is untrusted, but there are other uses as well. I’ll
present a couple here:

—Run tests against two different versions of a library (discussed on page 10)
—Running two instances of a program in the same parser without worrying about

namespace clashes, and the possibility of an instance tampering with the other
instance.

—Copy the environment a program runs in (which also opens up the possibility of
serializing the whole environment).

Take for instance the popular web framework Ruby on Rails. This framework
allows for rapid development and quick prototyping, but has the limitation that
an application has to run in an instance of rails (which itself is a Ruby program).
Using sandboxing it is possible to launch one Ruby runtime, which holds a number
Sandboxing of Dynamic Code



Sandboxing of Dynamic Code · 3

of sandboxes, each with it’s own rails instance. This enables you to run several rails
webapps in the same Ruby runtime without having to worry about one redefining
behavior in the other.

If the sandbox enables you to copy and serialize (store the contents somewhere
for later reading) the current environment, you could easily add the possibility for
“snapshots” in your application where it is possible to restore the complete state of
the program. To use a silly example (silly because this is a silly way to implement
it), you could write a game where the user is allowed to save his or her progress at
any time. When saving you could simply serialize the current state of the sandbox
the game is running in, and when the player loads a game later, you could load
the serialized sandbox. This could be used when prototyping the game, before you
actually wrote the save / load functionality.

Using the same approach you could also add backstepping abilities to a debugger
by serializing the environment for every n steps. If the user now wants to step
back in the execution, this is possible by restoring the previously serialized state of
the sandbox. There are more efficient ways to do this, but by using the sandbox
approach you will be up and running in a short period of time. Back stepping is a
feature few debuggers have.

3. SANDBOXING IN THE PROGRAMMING LANGUAGES

In this section, I’ll be looking into ways of achieving sandboxing through mecha-
nisms of the programming languages covered in this paper. All three has a way of
achieving sandboxing through the standard functionality in the language (without
the use of extra modules), and in Ruby’s case, work is being done on a new module
which eventually will enter the standard Ruby distribution [Matsumoto 2006a].

3.1 Python

In Python there are basically two ways of evaluating code: eval and exec. While
eval evaluates an expression in a string or a code object and returns the value of
the statement, while exec executes a statement. For non native English speakers
this needs further explanation:
eval only evaluates expressions (i.e. “1 + 2”), and cannot execute statements

(program code). While exec of course can evaluate an expression, it has no use,
since nothing is returned from the exec function, and the only way of knowing
the result of that expression is to assign it to a variable in the statement itself.
Evaluating other people’s code through eval is therefore “safe”. Evaluating other
people’s code through exec is not, as it can modify your own variables, and do
all kinds of malicious activities. This is different from how things are done in i.e.
Ruby, where only eval exists, but it does the same thing as both eval and exec
in Python.

In Python you can also call exec within a Dictionary (similar as a Hash in other
languages) instead of the global namespace. This limits the variables accessible to
the variables in the Dictionary. This, however, does not restrict access to malicious
methods which for instance modifies files on the local filesystem.

3.1.1 Restricted Execution. Python has support for sandboxing in it’s standard
library. The pythonistas prefer to refer to it as Restricted Execution[Python Software Foundation ],

Sandboxing of Dynamic Code



4 · Rune Hammersland

and not Safe Python or anything like that. This is because they acknowledge that
safe can mean a lot of things, and that making sure something is safe is very hard
to guarantee.

The book Python in a Nutshell[Martelli 2003] covers Restricted Execution pretty
good, and is a worthwhile read. Using RExec you can create a sandbox for the
untrusted code to be run in. In this sandbox you can add and remove modules, and
also replace existing modules with your own “safe” substitutions (i.e. a open()-
method that cannot open files for writing or appending, or only opens files in a
specific directory).

Since code executed or evaluated in the ERxec-environment runs in a sandbox,
it cannot modify the code which is already running in the interpreter. It can,
however, run code that creates exceptions. Also, the sandbox raises exceptions if
the imported code tries to do something it’s not allowed to. This means that if
you have a running program which tries to execute untrusted code in a sandbox,
you should probably do this in a try/except-block. If you don’t do this, raised
exceptions will terminate execution of your running program (and could of course
be used as a Denial of Service-attack).

Let’s take a look at how we can create a sandbox and run code in it. We will also
add a module to the sandbox, so functionality from that module will be available:

Listing 1. Creating a sandbox in Python
1 import rexec
2 try :
3 sandbox = rexec . RExec ( )
4 sandbox . add module (math)
5 sandbox . r ex e c ( ” p r i n t ’LOL from the sandbox ! ’ ” )
6 sandbox . r ex e c ( v a r i a b l e c o n t a i n i n g c od e o f s ome s o r t s )
7 except :
8 p r i n t ’Caught except ion . . . ’

We could also unload modules using sandbox.r unload(). If you want to have
more control over import statements, you can supply an argument to the class
when you are instantiating it. Giving a method there, using the lambda method,
the module will be imported only if the method you supplied returns True. If you
want to restrict the sandbox further, you can do this by changing some attributes
on the sandbox. These attributes are tuples (arrays) of strings containing names
of functions, modules and directories to be allowed or denied in the sandbox. The
properties are as follows:

nok builtin names. Built-in functions which should not exist in the sandbox.
ok builtin modules. Built-in modules that are okay to import in the sandbox.
ok path. The loadpath for the sandbox.
ok posix names. Attributes of the operating system that are okay to use in the

sandbox.
ok sysnames. Attributes of sys that are okay to import in the sandbox.

3.1.2 Removing “unsafe” methods. Python also has a module called Bastion,
which can wrap objects and forward method calls to only those methods you assume
Sandboxing of Dynamic Code



Sandboxing of Dynamic Code · 5

to be “safe”. This is done by supplying a filter to the bastion-object which returns
true for the methods that should be executable by the untrusted code. Using some
additional code, you can create a factory method which returns “safe” objects of
the class to be safeguarded.

Listing 2. Putting a class in a Bastion
1 import rexec , Bast ion
2
3 # Example c l a s s to in c lude in the sandbox .
4 c l a s s Example :
5 de f i n i t ( s e l f , s t r ) :
6 s e l f . s t r = s t r
7
8 # This method only p r i n t s a var i ab l e , so we conc ide r i t s a f e .
9 de f safe method ( s e l f , arg ) :

10 p r i n t s e l f . s t r + arg
11
12 # This method mod i f i e s the var i ab l e , so we conc ide r i t unsa fe .
13 de f unsafe method ( s e l f , arg )
14 s e l f . s t r = s e l f . s t r + arg
15
16 # F i l t e r to d i f f e r e n t i a t e between the good and the bad .
17 de f s a f e f i l t e r (method ) :
18 i f method [ 0 ] == ” ” or method [ 0 : 6 ] == ” unsa fe ” : r e turn Fal se
19 e l s e : r e turn True
20
21 de f c l a s s f a c t o r y ( arg ) :
22 re turn Bast ion . Bast ion (Example ( arg ) , s a f e f i l t e r )
23
24 # Create sandbox , and inc lude the ‘ ‘ bas t ioned ’ ’ v e r s i on o f our c l a s s .
25 sandbox = rexec . RExec ( )
26 s b b u i l t i n s = sandbox . add module ( ’ b u i l t i n s ’ )
27 s b b u i l t i n s . Example = c l a s s f a c t o r y

3.1.3 A note on Python 2.3 and 2.4. Python 2.3 and 2.4 raises an exception
when you try to instantiate a RExec or Bastion class. This is because these modules
have been deprecated in Python 2.3 [Python Software Foundation 1998]. This is
because the new way classes are designed in Python ≥ 2.3 offers several ways to
break out of the restricted execution environment. The Python developers have
stated that they don’t have the time or the interest to fix this for the time being.
They also note that earlier versions of Python have known bugs in the RExec
module, so other ways to achieve this should be considered.

3.2 Perl

Perl lets you evaluate statements using the eval and do routines. The only dif-
ference between these is that eval evaluates the contents of a string, while do
evaluates the contents of a file. Sometimes this is something we actually want to
do, and as explained before, using these routines on strings and files you don’t know
the contents of should not be done without taking precautions.

Sandboxing of Dynamic Code



6 · Rune Hammersland

Perl offers a couple of ways to help you in running other people’s code (and of
course other security mechanisms as well). While not being used for running (or
securing) code, Perl has a technique called tainting. With tainting, all strings that
are user supplied (either via reading of stdin, or as arguments to the program,
etc.) are tainted. Tainted strings cannot be used for dangerous routines (i.e. you
cannot open a file if the string containing the path is tainted). Tainting is turned
on automatically if the program is run setuid or setgid, and can be turned on
by using the -T argument to Perl. Unfortunately checking for taintedness in Perl
is not straight forward (but then again, you should assume objects being tainted if
running in tainted mode and calling unsafe routines). Listing 3 shows two methods,
the first taken from Programming Perl [Wall et al. 1996], and the second from CGI
Programming with Perl [Guelich et al. 2000]. It also shows how untainting is done
[Wall et al. 1996].

Listing 3. Checking for taintedness
1 # k i l l t e s t s f o r t a i n t edne s s even when no PID to s i g n a l i s supp l i ed .
2 sub i s t a i n t e d {
3 not eva l {
4 j o i n ( ”” , @ ) , k i l l 0 ;
5 1 ;
6 } ;
7 }
8
9 # Use a sub s t r i ng conta in ing nothing , and use eva l f o r t a i n t check ing .

10 sub i s t a i n t e d {
11 my $var = s h i f t ;
12 my $blank = subs t r ( $var , 0 , 0 ) ;
13 re turn not eva l { eva l ”1 | | $blank” | | 1 } ;
14 }
15
16 # Untaint ing a value :
17 # ( Per l assumes matches from regu l a r exp r e s s i on s to be s a f e )
18 i f ( $addr =˜ /ˆ([−\@\w. ]+) $ /) {
19 $addr = $1 ;
20 } e l s e {
21 d i e ”Address i s unsa fe . ”
22 }

3.2.1 Safe.pm. Safe.pm is a Perl module which creates a “container”, or what
we will refer to as a sandbox, for code to run in. At creation, this sandbox will
get it’s own namespace, so it will not have access to the surrounding code. The
only variables that are shared are the variables % , $ and @ . This is because a lot
of standard functionality works on these variables and most of Perl would break if
they were not available.

After creating a sandbox (or even when creating it), you can specify a operator
mask for the sandbox. This is basically a string containing 0x00 or 0x01 values,
Sandboxing of Dynamic Code



Sandboxing of Dynamic Code · 7

and has as many characters as there are operators in the Perl environment 2. If a
0x01 is found, the offset it was at denotes the operator number to mask off (or deny
access to if you like). There are a couple of convenience routines that make creating
and maintaining this string a bit easier. After creating a sandbox, you could i.e.
call $sandbox->trap("read"); or $sandbox->untrap("read"); to trap or untrap
this operator. There is also a ops to mask routine which takes a list of operators,
and creates a mask where these are masked out. The default mask will mask out all
operations that in some way gives access to the system, except a few like sysread
which needs a filehandle to operate anyways (which you can supply to the sandbox
if needed).

To evaluate code in the sandbox, you can use the Safe object’s reval and rdo
routines (shown briefly in listing 4). These routines work exactly like you expect
them to: evaluating a string or the contents of a file in the sandbox. If something
fishy happens an error will occur. This error will occur run-time for the surrounding
code, but compile-time for the sandboxed code (unless the sandboxed code contains
an eval statement, in which case it will happen run-time in the sandbox as well,
but compile-time for the nested eval). If an error occurs, the $@ vector will contain
an error message along the lines of ‘‘%s trapped by operation mask operation
...’’, and the code will not be run. If no error occurs, the reval or rdo routine
will return the last statement executed, or the returned value.

It is also possible for the surrounding code to share variables (and subroutines
as these can be accessed by a variable) with the sandbox. This is done using the
sandbox’s share routine, as seen in listing 4. The routine takes a string containing
the name of the variable (with a leading type identifier) to share. In this way you
can create semi-safe subroutines for exceptions where you want code in the sandbox
to be able to do something that will usually be restricted in the sandbox. This can
be done since the operator mask in the sandbox only applies to code being compiled,
and as the subroutine you’re sharing has been compiled in the surrounding code
(where there is no, or a different, operator mask) calling it will work perfectly fine.

Listing 4. Sharing code with the sandbox
1 my $sandbox = new Safe ;
2 my $un t r u s t e d f i l e = ”sample . p l ”
3
4 sub p o t e n t i a l l y u n s a f e {
5 @ ; # Untaint arguments found in the argument vec to r .
6 system ( ’rm ’ , ’ f oo ’ , ’ bar ’ ) ; # Cal l unsa fe methods .
7 }
8
9 # Share the method with the code in the sandbox .

10 $sandbox−>share ( ’&po t e n t i a l l y u n s a f e ’ ) ;
11 $sandbox−>r e va l ( ’ p r i n t $ ; ’ ) ;
12 $sandbox−>rdo ( $ u n t r u s t e d f i l e ) ;

2Note that operators here mean core operations, and not operators as we know them from i.e.
mathematics

Sandboxing of Dynamic Code



8 · Rune Hammersland

3.3 Ruby

In Ruby it is possible to evaluate expressions and statements using the built-in
method Kernel.eval (usually you can drop the Kernel part, as methods not found
in other objects will be looked up in Kernel). Ruby’s eval method is very powerful
and hence extremely dangerous to use if you are not 100% sure about what you are
doing. For instance it is no problem to “require” code found on a website in your
running application using a block of code like this:

Listing 5. Requiring a library from the Internet
1 # open−u r i a l l ows us to open ( ) webs i t e s (among other th ing s ) . . .
2 r e qu i r e ’ open−u r i ’
3
4 begin
5 r e qu i r e ’ foo− l i b ’
6 r e s cue LoadError
7 puts ” foo− l i b not found on your system . ” ,
8 ”Gett ing i t from the i n t e r n e t s . . . ”
9 eva l open ( ’ http :// foo− l i b . org / foo− l i b / cur rent / foo− l i b . rb ’ ) . read

10 end

While this is perfectly possible to do, it of course opens up a whole bunch of
possible security holes. Even if you trust the developer of foo-lib, and feel totally
safe that the path always will point to the current version of the library, you could
always be a victim of a DNS poisoning attack, and without knowing it require
another library (or program statements). To use a famous phrase: With great
power, comes great responsibility [Lee et al. 1963].

While Ruby doesn’t have a sandbox module in it’s core libraries yet (stable ver-
sion as this is being written is version 1.8.5), it does offer a way to make your
programs more safe. A sandbox is under development, and Ruby’s author, Yuki-
hiro Matsumoto, has been very helpful, allowing the developers access to Ruby’s
internals [Matsumoto 2006b] to make the development possible [Matsumoto 2006c]
3. He has announced that he would like to have it in the standard distribution of
Ruby, once it becomes stable [Matsumoto 2006a].

3.3.1 $SAFE. Ruby, as BSD, has the concept of safe levels (called securelevels
in BSD). Safe levels can be adjusted either in code, or while invoking the interpreter.
If the interpreter is started with ruby -T3 scriptname or ruby -T 3 scriptname,
the safe level is set to 3. In addition: if the script is run setuid or setguid, the
safe level is automatically set to 1. Setting the safe level in the source code is as
easy as $SAFE = 2. Note that you cannot lower the safe level. Trying to do so will
yield a SecurityError exception.

A table explaining what the different safe levels do is included in the Pickaxe
[Thomas et al. 2004] (a longer version also exists in the same book), and included
here:

3Note that this is not referring to making the source code available, as Ruby is published under

a MIT like lisence. It means making variables and data structures available to other C libraries.
Thus making it possible to use the sandbox module without patching Ruby itself

Sandboxing of Dynamic Code



Sandboxing of Dynamic Code · 9

$SAFE Constraints

0 No checking of the use of externally supplied (tainted) data is performed. This is

Ruby’s default mode.

≥ 1 Ruby disallows the use of tainted data by potentially dangerous operations.
≥ 2 Ruby prohibits the loading of program files from globally writable locations.

≥ 3 All newly created objects are considered tainted.

≥ 4 Ruby effectively partitions the running program in two. Nontainted objects may
not be modified. Typically, this will be used to create a sandbox: the program sets

up an environment using a lower $SAFE level, then resets $SAFE to 4 to prevent

subsequent changes to that environment.

Table I. Constraints in different safe levels

An explanation of tainting is found in the Perl section (section 3.2). Tainting in
Ruby is similar to tainting in Perl, but in Ruby checking and untainting is a bit
easier. To check if an object is tainted, you only have to call the tainted? method,
and to untaint the object, all you have to do is call the untaint method (after
checking if it is safe of course). Duplicating a tainted object, or concatenating it
with another (as you’re likely to do with strings) will yield another tainted object.
As you can see, using safe level 4, it is impossible to modify objects that are
untainted (in effect locking them down). This can be, and has been, used to create
sandboxes.

Listing 6. Demonstrating $SAFE
1 de f t r y i n s e c u r e l e v e l =1, &blk
2 # Supers imple ”sandbox”
3 Thread . new {
4 $SAFE = l e v e l
5 begin
6 y i e l d blk
7 r e s cue Secur i tyEr ro r => e
8 puts ”Caught Secur i tyEr ro r : #{e}”
9 end

10 } . j o i n
11 end
12
13 # input i s ta inted , so supply ing i t to IO#open y e i l d s Secu r i ty Error .
14 t r y i n s e c u r e 1 do
15 puts ”Write something : ”
16 input = ge t s . chomp # Tainted input
17
18 F i l e . open input do | f i l e | # r a i s e s except ion here .
19 puts f
20 end
21 end
22 # Using SAFE l e v e l 3 , newly c reated ob j e c t s are cons ide r ed ta in t ed .
23 # In e f f e c t : opening f i l e s with new s t r i n g s w i l l not work . We w i l l need
24 # a s t r i n g c reated be f o r e r a i s i n g the $SAFE l e v e l . . .
25 t r y i n s e c u r e 3 do
26 F i l e . open ’BOOYA’ , ’w ’ do | f i l e | # r a i s e s except ion here .
27 f i l e . puts ”hehe”

Sandboxing of Dynamic Code



10 · Rune Hammersland

28 end
29 end

3.3.2 Sandbox. This summer, work started on a sandbox for Ruby, written in
“Ruby C”. There have been earlier attempts at making sandboxes (usually using
safe levels), one is even mentioned in the Pickaxe [Thomas et al. 2004], but none of
them has been written as a module in C. The FreakyFreakySandbox (as it was first
referred to in the author’s blog) has, as earlier mentioned, got Yukihiro Matsumoto’s
blessing, and will likely be included in the standard distribution of Ruby when it’s
done.

It works by creating a struct called sandkit, which holds a whole Ruby environ-
ment. In this environment some of the standard methods have been modified to
make sure people cannot do evil things like calling Kernel#fork, Kernel#system
and other “dangerous methods” (these methods are simply not defined). There are
two kinds of sandboxes: Full and Safe. The safe one is more restricted (obviously),
and both can take an argument :timeout to specify how long the code should be
allowed to run before the sandbox shuts down.

An announcement posted to the ruby-core mailinglist [why the lucky stiff 2006]
even includes code to show how you can load two versions of the same gem (a
library packaged in a specified way) to do testing on multiple versions:

Listing 7. Loading different versions of a library
1 r e qu i r e ’ sandbox ’
2
3 hpr i co t = Sandbox . new : i n i t => [ : a l l ]
4 hp r i co t . eva l (%{
5 r e qu i r e ’ rubygems ’
6 requi re gem ’ hpr i co t ’ , ’ =0.4.47 ’
7 r e qu i r e ’ hp r i co t ’
8 puts Hpricot ( ”<a c l a s s=te s t >l i nk </a>” ) . s earch ( ” . t e s t ” )
9 })

10
11 hpr i co t2 = Sandbox . new : i n i t => [ : a l l ]
12 hpr i co t2 . eva l (%{
13 r e qu i r e ’ rubygems ’
14 requi re gem ’ hpr i co t ’ , ’ =0.4 ’
15 r e qu i r e ’ hp r i co t ’
16 puts Hpricot ( ”<a c l a s s=te s t >l i nk </a>” ) . s earch ( ” . t e s t ” )
17 })

3.3.3 Removing “unsafe” methods. Removing access to “unsafe” methods in
Ruby, can be done through Module.remove method and Module.undef method.
The difference between these are that Module.remove method removes the method
from the class, but must be called in the class the method is implemented, and has
no effect in derived classes (unless they reimplement the method, in which case the
reimplemented method will be removed, and the inherited method will be called
if something tries to call the method). Module.undef method on the other hand
Sandboxing of Dynamic Code



Sandboxing of Dynamic Code · 11

only prevents the class (and derived classes) from responding to the method (the
method is not actually removed).

Listing 8. Removing unsafe methods from a class in the sandbox
1 c l a s s Example
2 de f safe method ( s t r )
3 puts @var . t o s + ” ” + s t r . t o s
4 end
5
6 de f unsafe method ( s t r )
7 @var += s t r
8 end
9 end

10
11 sb = Sandbox . new ; sb . import Example
12 sb . eva l ”Example . i n s t a n c e e v a l { remove method : unsafe method }”
13
14 Example . i n s t a n c e e v a l ”{ remove method : unsafe method }”
15 sb = Sandbox . new ; sb . import Example
16
17 sb = Sandbox . new ; sb . r e f Example

As you can see in listing 8, there are a couple of ways to achieve this. The first
example (line 11 and 12) will remove the method only in the sandbox. The second
approach (line 14 and 15), will remove the method from the surrounding code as
well, but will result in sandboxed code being unable to call it as well. The problem
with removing methods from classes in the sandbox, is that it’s not really fool proof.
A malicious user could always reimplement the functionality in the sandbox (unless
it relies on C extensions or other required files which may not be included in the
sandbox).

There is also the third approach (line 17). The difference between Sandbox#import
and Sandbox#ref is that Sandbox#import will copy the supplied class into the
sandbox using a deep copy (copying parent classes/modules until it reaches Object
or a class/module already defined in the sandbox). Sandbox#ref will create a
reference to a class (or module) outside of the sandbox. This is implemented
[why the lucky stiff 2006] by creating a BoxedClass in the sandbox which catches
method calls through the method missing method. When a method is called on a
BoxedClass, the sandbox halts and “proxies” the method call to the surrounding
environment, calls it there, marshals the result, restores the sandbox, and return
the unmarshaled result from the method missing method. Thus removing methods
on the BoxedClass will not have any effect (it might work using undef method) as
the call is proxied out of the sandbox anyways. Sandbox#ref is meant for supplying
things like restricted database access (see the reference for more details).

Unfortunately, I have not had the chance to build the sandbox module on my
system to play around with code examples. This is mainly because I wrote the
Ruby section last, but also because to build it against Ruby 1.8.5 (which is the
current version), you need to patch Ruby (thus requiring me to recompile Ruby
itself as well), or build Ruby from CVS. In any case, I would be short on time.

Sandboxing of Dynamic Code



12 · Rune Hammersland

4. SANDBOXING OUTSIDE OF THE PROGRAMMING LANGUAGES

Using security features of the operating system it is possible to create something re-
sembling small virtual machines within the system. All UNIX like systems has this
possibility using the chroot mechanism, which we will look into in the next chap-
ter. FreeBSD (and some other BSD variants) also include a strengthening of the
standard chroot mechanism. Unfortunately, these mechanisms are not supported
“out-of-the-box” in Microsoft Windows, but there are some third party alternatives
which I will quickly introduce.

4.1 UNIX: chroot

Using chroot, you are able to create a confined space in the filesystem in which
untrusted programs may run without being able to access the sensitive parts of the
filesystem. While this may sound good, there are several known ways to break out
of a chroot environment (including making your own disk device and mount that),
so you should not trust this approach fully, but rather think of it as an extra bump
in the road. A simple way to break out is included (note that if there is no root
user defined within the chroot environment, no setuid binaries, no devices and
the process running in the environment dropped root privileges after entering the
chroot, breaking out seems impossible):

Listing 9. Breaking out of chroot
1 i n t main ( void )
2 {
3 i n t i ;
4 mkdir ( ” breakout ” , 0700 ) ;
5 chroot ( ” breakout ” ) ;
6 // The new root i s now one step f u r t h e r down in the f i l e system , and
7 // the program i s now out s id e o f the chroot ( s i n c e the root i s moved ) .
8 // Change d i r e c t o r y upwards un t i l we reach the r e a l root .
9 f o r ( i = 0 ; i < 100 ; i++)

10 chd i r ( ” . . ” ) ;
11 chroot ( ” . ” ) ;
12 // Give us a s h e l l !
13 ex e c l ( ”/bin / sh” , ”/bin / sh” ,NULL) ;
14 }

chroot can be invoked through the chroot command, or through the chroot
function in the C programming language. By using the command line tool, you
can chroot programs that doesn’t do this themselves using the C API. Through the
command line tool you can also specify which user and group the program invoked
in the chroot environment should run as. If you are using the C API, the same can
be achieved using the functions setgid(), setgroups() and setuid().

4.2 BSD: jail

Availiable in FreeBSD and in NetBSD. It is not included in OpenBSD, as Theo
de Raadt claims it’s too complicated to be secure. jail [Kamp and Watson 2000]
works in a similar way to chroot (and actually uses chroot itself), but it includes
several improvements with regard to security. It most notably restricts certain
Sandboxing of Dynamic Code



Sandboxing of Dynamic Code · 13

systemcalls, so it is impossible to mount anything, you cannot change network
settings and more. To support all this, the jail system call (and hence the command
line tool) gets some help from the system kernel. Opposed to chroot, breaking out
of a jail has not been done, even with root privileges. Further, each jail created
may only bind to one IP address, and some of the functionality in the network layer
has been restricted (i.e. spoofing IP addresses). More information about what is
restricted, and how things are implemented (including how the kernel and standard
API was changed) can be found in the paper about jail [Kamp and Watson 2000].

BSD also includes a concept called securelevels (mentioned in section 3.3.1).
Using these, you can lock down the system to different levels. An often used analogy
is that to the Defcon-levels in the US armed forces. By raising the securelevel, you
harden the system against attacks. Superusers can raise the securelevel, but only
the init process (and not even that on FreeBSD) can lower it. When used in
combination with jails, each jail gets it’s own securelevel. The highest of the jail’s
securelevel and the global securelevel (that of the host system) will be used in the
jail.

4.3 Solaris: Containers

Sun Solaris 10 contains a mechanism called “Containers” and “Zones”. Using these,
we are able to create virtual machines within the operating system. These virtual
machines cannot interfere with the host (they have no access to the filesystem), and
restrictions on CPU use and other hardware resources can be enforced per virtual
machine. It is also possible to create “Sparse Zones”, which includes the minimum
it needs to run (to use less disk space), or “Whole-Root Zones” in which the whole
operating system is duplicated. A “Container” is a collection of zones which shares
the same hardware resources. Not everything is suited to run in “Zones”, as they
are not really running their own kernel. More info about “Zones” can be found in
the man pages for zoneadm and zonecfg, and through Sun BluePrints [et. al. 2006].

4.4 Windows

There are no built in functionality in Microsoft Windows to achieve these things
(it is in Windows Virtual Server, and will probably be in Windows Vista). There
are however third party developers who develop solutions resembling BSD’s jail.
Trustware 4 has developed something called BufferZone, which hooks into the Win-
dows kernel and intercepts “dangerous” systemcalls, and reroutes things like writ-
ing to the registry. Using this technique, it is possible to run unsafe programs in a
BufferZone (or a sandbox if you will) to avoid problems affecting the host system.
It also stores “unsafe writes” in another location, so everything looks consistent for
the program being sandboxed.

In addition, it’s worth mentioning Norman’s attempt to fight computer virii using
sandboxing 5. Using this approach they can let untrusted programs run free in a
sandbox, and find out if it is malicious depending on it’s behavior.

4http://trustware.com
5http://sandbox.norman.no

Sandboxing of Dynamic Code



14 · Rune Hammersland

5. CONCLUSION

The three languages I’ve looked at takes somewhat different approaches to sand-
boxing. The reason for this is the way the languages are built. In Perl for instance,
everything gets compiled to a basic set of “operators” which you can then choose to
disable. This might make it hard to know what routines will break, but you will be
certain that the operation you prohibited will not be run from within the sandbox.
While the approaches are different, there are some similarities. In all cases the
main namespace is swapped with a new (more restricted). This is of course done
to separate the sandbox and the surrounding code.

I found that all the three languages have (looking at the books at least) good
support for creating separated execution environments. Sadly enough this is dep-
recated in Python. The only way to achieve similar things there is to eval the
code in a restricted dictionary. Ruby’s sandboxing module may not yet be com-
plete, but it sure looks promising, and using the $SAFE variable (which has been
available a long time) you can come a long way. Again; getting this right (and not
firing off unnecessary many exceptions) can take some fiddling, but the possibility
is certainly there.

Writing this paper has taught me more about the languages in question, especially
Python and Perl. I have, as earlier stated, been using Ruby for a while now, but it
was interesting to take a look at the “competitors”. Noticing similarities between
them, and also how being built different called for different solutions. Both Ruby
and Python has elements inspired by Perl, so they are relatively similar syntax
wise.

I have also learned not to trust books blindly, as the Python book [Martelli 2003]
contained a great deal about the Rexec module, even though it was deprecated in
the very same version of Python that the book covered. In addition, the Perl book
[Wall et al. 1996] had a chapter about Penguin, a module for signing Perl code.
This module has been “dead” since 1997. Not really the book’s fault since it is
from 1996, and having checked things twice, I didn’t actually write anything about
it.

Sandboxing of Dynamic Code



Sandboxing of Dynamic Code · 15

A. SOURCES

REFERENCES

et. al., H. J. F. 2006. The Sun BluePrints Guide to Solaris Containers: Virtualization in the

Solaris Operating System. http://www.sun.com/blueprints/1006/820-0001.html.

Free Software Foundation. 1991. Gnu general public licence.

http://www.gnu.org/copyleft/gpl.html.

Free Software Foundation. 2006. The free software definition.
http://www.gnu.org/philosophy/free-sw.html.

Guelich, S., Gundavaram, S., and Birznieks, G. 2000. CGI Programming with Perl , Second

ed. O’Reilly.

Kamp, P.-H. and Watson, R. N. M. 2000. Jails: Confining the omnipotent root.
http://docs.freebsd.org/44doc/papers/jail/jail.html.

Lee, S., Ditko, S., and Kirby, J. 1963. The Amazing Spider-Man 1. Marvel Comics.

Martelli, A. 2003. Python in a Nutshell. O’Reilly.

Matsumoto, Y. 2006a. Re: [ann] sandbox 0.0.11 – taking the i out of eval.

http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/202864.

Matsumoto, Y. 2006b. Re: [yay] my sandboxing extension!!
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/8314.

Matsumoto, Y. 2006c. Re: [yay] my sandboxing extension!!
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/8311.

Python Software Foundation. RExec Module in Python. Python Software Foundation.
http://docs.python.org/lib/restricted.html.

Python Software Foundation. 1998. 17 new, improved and deprecated modules.

http://www.python.org/doc/2.3.5/whatsnew/node18.html.

Thomas, D., Fowler, C., and Hunt, A. 2004. Programming Ruby: The Pragmatic Programmer’s
Guide, Second ed. Pragmatic Bookshelf.

Wall, L., Christiansen, T., and Schwartz, R. L. 1996. Programming Perl , Second ed. O’Reilly.

why the lucky stiff. 2006. Freakyfreaky now resumes its usual sandly self.

http://redhanded.hobix.com/inspect/freakyfreakyNowResumesItsUsualSandlySelf.html.

why the lucky stiff. 2006. sandbox r50, here we go, loading conflicting gems.
http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-core/8758.

Sandboxing of Dynamic Code


